
Rotzy
Building an iPhone Photo-Sharing

App on Google App Engine
www.rotzy.com

by Gee-Hwan Chuang

What is Rotzy?

Rotzy is a mobile community for instantly sharing, discussing and
discovering photos around the world with location tagging and
maps.
After you take and upload a photo from your device, it becomes
part of your gallery and is broadcast to your friends and followers
in a Twitter-like timeline.
Users can discuss your photo and even reply with another photo
for a richly interactive experience.
You can also simultaneously broadcast photos to other services
like Twitter, Facebook, Tumblr, or your own web site using our
widget.

Interesting Hurdles

Photo Storage
Location Search
Random Byte Access (for Videos)
Background Tasks

Photo Storage

Photos are currently small and are
stored as blobs.
Thought about moving them
to S3 but not worth it yet.
It costs more to store it in the datastore
because of datastore overhead as well
as cpu usage while retrieving photos.
One benefit is that it gives us a trigger
for doing background tasks, since there
is currently no way to do this natively.

Photo Storage

Sample Model for Storing Photos

class PhotoData(db.Model):
 photo_o = db.BlobProperty()
 photo_l = db.BlobProperty()
 photo_m = db.BlobProperty()
 photo_s = db.BlobProperty()
 photo_t = db.BlobProperty()
 created = db.DateTimeProperty(auto_now_add=True)

Location Search

Some relational databases have built-in methods or extensions
that allow for easy latitude, longitude searches.

The AppEngine datastore does not... and on top of that you can
only do an inequality filter on one property.

That means, you cannot do something like,

WHERE lat > x1 AND lat < x2 AND lon > y1 AND lon < y2

Location Search

So, we use a python implementation of Geohash
http://en.wikipedia.org/wiki/Geohash

Essentially, this creates a string hash based on a given latitude
and longitude.

A property of this hash is that places that are close together
have a similar prefix. The longer the prefix, the closer they are.

This hash is calculated and stored along with the latitude,
longitude data.

http://mappinghacks.com/code/geohash.py.txt

http://mappinghacks.com/code/geohash.py.txt

Location Search

An Example,

Cupertino, CA : 9q9hqc4k35xxn

Mountain View, CA: 9q9hy0t1kzgxg

Los Angeles, CA: 9q5ctr1b27xzt

Austin, TX: 9v6kpy205t1t6

Boston, MA: drt2zp1q95084

Location Search

How the query works...

Given the search "radius",
we do a prefix match of up to
6 characters. radius=1,2,3, ...

For speed, we store each of these
6 possible prefixes in the db.
bbox1, bbox2, bbox3, ...

hash = str(geohash.Geohash((lon, lat)))
bboxhash = hash[:radius]
photos = Photos.all().filter('bbox'+str(radius)+' = ',bboxhash)
photos = photos.filter('created >= ',startDT).filter('created <= ',endDT).order('-created').fetch(20)

Random Byte Access

We are experimenting with storing short video clips in the
datastore along with photos.

When serving an mp4 video clip, the iPhone will use HTTP
random byte access to get parts of the file.

Many regular web servers handle this seamlessly for files.

Since the video clip is stored as a blob... we need to check the
HTTP headers to see which piece of the data needs to be
returned and only return that portion of the blob.

Random Byte Access
 headers = self.request.headers
 if headers.has_key('Range'):
 start_byte,end_byte = (headers['Range'].split('='))[1].split('-')
 start_byte = int(start_byte)
 if end_byte == "":
 end_byte = 0
 else:
 end_byte = int(end_byte)
 ranged = True
 else:
 ranged = False

 # Set Response Headers
 self.response.headers['Content-Type'] = "video/mp4"
 self.response.headers['Accept-Ranges'] = "bytes"
 if ranged:
 self.response.set_status(206)
 content_len = str(len(content))
 if end_byte == 0:
 self.response.headers['Content-Range'] = "bytes " + str(start_byte) + "-" + content_len + "/" + content_len
 else:
 self.response.headers['Content-Range'] = "bytes " + str(start_byte) + "-" + str(end_byte) + "/" + content_len

 # Write out content
 if ranged:
 if end_byte == 0:
 self.response.out.write(content[start_byte:])
 else:
 self.response.out.write(content[start_byte:(end_byte+1)])
 else:
 self.response.out.write(content)

Background Tasks

You cannot run background tasks on AppEngine yet.
You can only run code in response to queries... so we just do a
little bit on queries that otherwise do not take very long.

For Rotzy, that means photo requests and profile pic requests.

We created a "TaskQueue" to store the pending tasks and do
one single task each time a profile photo is requested.

Background Tasks
class TaskQueue(db.Model):
 task_type = db.StringProperty(required=True)
 param1 = db.StringProperty(required=True)
 param2 = db.StringProperty(required=True)
 created = db.DateTimeProperty(auto_now_add=True)

 # "atomically" get the next task
 def getNextTask(key):
 task = db.get(key)
 if task:
 ret = {"task_type":task.task_type, "param1":task.param1, "param2":task.param2}
 task.delete()
 return ret
 else:
 return None
 getNextTask = staticmethod(getNextTask)

 def doTask():
 # the next task to do as a transaction
 task = TaskQueue.all().order('created').get()
 if task:
 try:
 tasktuple = db.run_in_transaction(TaskQueue.getNextTask, task.key())
 except:
 tasktuple = None
 if tasktuple:
 if tasktuple["task_type"] == "mktwit":
 TaskQueue.mkTwit(tasktuple["param1"], tasktuple["param2"])
 ...

Thank You and Contact Info

Check out Rotzy on the web or iPhone:

http://www.rotzy.com

Some other projects I'm working on also hosted in the cloud:

http://www.remobo.com
http://www.solecial.com

My contact info if you have questions about Rotzy, Google App
Engine, or anything else:

Gee-Hwan Chuang, http://www.geesblog.com, follow me on twitter @geehwan

