
25/01/2009 17:29SaleRadar

Page 1 of 10http://saleradar.blogspot.com/

Next Blog»SEARCH BLOG FLAG BLOG

SaleRadar

M O N D A Y , S E P T E M B E R 8 , 2 0 0 8

Searching the Grid: BigTable and Geo
Searches

Google's BigTable datastore looks like a relational
database. It smells like a relational database. It even
tastes just a little like a relational database. But it's no
relational database. Google's not shy about this, either. In
their words: "It's not a relational database!" Well, OK, I'm
paraphrasing, but it really isn't.

Once upon a time, I wrote a multidimensional game of
chance where, based on the statuses of adjacent sectors of
a playing field, different options of attack and defense
were possible. The framework of the game (who is
playing, who's turn is next, what does the display look like)
was all written in PERL, but once a player's turn started,
all of the logic--ALL of it--was in MySQL. It was beautifully
convoluted, and terribly processor and RAM-intensive, but
man, did it keep my PERL code clean.

BigTable's query language ("gql") may look like SQL, but it's
severely limited, and ever day there's someone new on the
board saying, "This is so easy in MySQL, why can't I do X?",
and the reason is that BT/GQL comes from a whole
different design philosophy. Not better, not worse, but
certainly different, and it takes a bit of pondering to get
used to some of the ideas.

Before I get to my point, I'll go back a bit in history. I
don't know how they came up with this plan, but if I had
designed BigTable, this is what would have inspired me.

Most of you are likely familiar with RAID for storage and
data security. The idea is that 10 cheap disks, set up
correctly, can have better performance and reliability than
one expensive, fast, disk that's, got the same storage

Blog Archive

▼ 2008 (3)

▼ September (3)

Searching the Grid:
BigTable and Geo
Searches

What is SaleRadar?

Working on Cloud Nine

http://www.blogger.com/next-blog?navBar=true
http://saleradar.blogspot.com/2008/09/searching-grid-bigtable-and-geo.html
http://saleradar.blogspot.com/?widgetType=BlogArchive&widgetId=BlogArchive1&action=toggle&dir=close&toggle=YEARLY-1199174400000&toggleopen=MONTHLY-1220252400000
http://saleradar.blogspot.com/search?updated-min=2008-01-01T00%3A00%3A00-08%3A00&updated-max=2009-01-01T00%3A00%3A00-08%3A00&max-results=3
http://saleradar.blogspot.com/2008_09_01_archive.html
http://saleradar.blogspot.com/?widgetType=BlogArchive&widgetId=BlogArchive1&action=toggle&dir=close&toggle=MONTHLY-1220252400000&toggleopen=MONTHLY-1220252400000
http://saleradar.blogspot.com/2008/09/searching-grid-bigtable-and-geo.html
http://saleradar.blogspot.com/2008/09/what-is-saleradar.html
http://saleradar.blogspot.com/2008/09/working-on-cloud-nine.html

25/01/2009 17:29SaleRadar

Page 2 of 10http://saleradar.blogspot.com/

one expensive, fast, disk that's, got the same storage
capacity as the 10-disk array is configured to support. The
10 disks can have layers of redundancy spread across them,
they can have the data distributed in such a way that
effective latency is reduced, and the bus connecting them
to the computer can be easily saturated for the greatest
efficiency. And the best thing is that they're cheap. One
disk fails, you pop a new one in, the data rebuilds, and
you're safe until the next one breaks. With some RAID
configurations, you might be able to lose several disks and
still be able to save your data.

Google (and many other companies) took that same
philosophy and applied it to their hardware as well. While
they certainly may have some specialized systems in a lab
somewhere, the hard work is done by lots and lots of
cheap, easily replaced Linux systems in a big cluster. A
node goes out, just pop a new one in. They go through a
lot of hardware, I'm sure, but everything is fast, fast, fast,
and--at least for search--they essentially never have
downtime.

So here's the exciting part. BigTable extends that
philosophy to data. Instead of making the datastore smart
and letting you do all sorts of processor-intensive queries,
they'd rather have you build in all sorts of redundant data
when you save your objects so that they can index your
information for easy searching.

A good example is geographic searches. A lot of people are
searching for the solution to this question:

 "How do I search for all the records in my database within
Q degrees of my point, (long1, lat1)?"

In MySQL, it'd be easy: when you save, save the lat and
long, and when you search, do something like:

It's not totally pretty, but depending where on the earth
you are, you'll get something up to about a 20 mile by 20
mile square (less area and less square as you get closer to
the poles, since the earth is round).

But this query isn't possible in GQL, as only one dimension
of inequality is allowed. Basically, this is because, when

25/01/2009 17:29SaleRadar

Page 3 of 10http://saleradar.blogspot.com/

of inequality is allowed. Basically, this is because, when
they're done indexing your data, they want all the possible
requests to be able to be represented as a simple flat-file
list, so based on the bounds, they just pick and choose the
right section of that list. Multiple inequalities means
multiple dimensions, and that suddenly gets expensive in
compute cycles.

Someone came up with a nice solution called geohashing,
which is pretty cool. As you move north and east, the
geohash that comes out of your lat/long combination gets
higher in value; as you move south and west, it gets lower.
 All you have to do is do a geohash of your object when
you store it, and then when you do your query, it looks
something like this:

 upperBound = geohash(mypoint.lat + 0.15, mypoint.long +
0.15)
 lowerBound = geohash(mypoint.lat - 0.15, mypoint.long -
0.15)
 surroundings = db.GqlQuery("SELECT * FROM Points
WHERE geohash > :1 AND geohash < :2", lowerBound,
upperBound)

Very cute, very useful, but it has problems. First, there
are accuracy issues that might force you to add extraneous
digits in cases where the lattitude and longitude values
you're searching on have few digits after the decimal. A
hash of 39,-122 might look like "ABCDE", and a hash of
39.123,-121.98765 would look like "ABCDEFGHIJK". The
degree of accuracy alone might throw off a comparison. As
such, it's important to make sure that all your numbers
have the same degree of accuracy, so tricks like turning 39
into 39.0000000001 and 39.123 into 39.1230000001 are
important for making it work.

And again, all of this defeats the purpose of BigTable, it's a
bit compute-intensive, and it's using inequalities where you
don't actually need it, meaning that if you've got another
dimension that you want to exclude on, you can't without a
redesign.

So we come back to the redundant data option, and my
solution to the problem, and that is to define the world as
a distorted grid, save each point with a list of its

25/01/2009 17:29SaleRadar

Page 4 of 10http://saleradar.blogspot.com/

a distorted grid, save each point with a list of its
neighboring grid squares, and then search on that.

The way I do it is this: In addition to the lat and long for
each garage sale I save to the datastore (and some other
metadata), I save a list I call "surroundings", and that list
has nine ASCII values which are related to low-degree-of-
accuracy long/lat points.

To wit: if I have a point at long -123.11231212312 and lat
33.4456789, I shift the digit over one, floor it, drop the
decimal section, and save it as an ASCII coordinate
representation. Those points become -1231,334. But that's
just the grid square that the point is in (about 7 miles wide
at the equator), and searching just for points within that
grid won't give you great values if the originating point is
on the west edge of that grid square. There might be a
garage sale 0.1 miles to the west that will never be found.

To resolve this, I don't just save the grid square that
contains the original point, but also all the grid squares
around it. Once I've gotten the modified lat and long, I
just take all the combinations of adding and subtracting
one to each of them, and push them all into a list It looks
something like this

With this done, I save my point, including the metadata,
the actual lat/long, and the 9 grid squares. It's pretty
simple:

 grid = [str(mLon-1)+','+str(mLat+1),
 str(mLon)+','+str(mLat+1),
 str(mLon+1)+','+str(mLat+1),
 str(mLon-1)+','+str(mLat),
 str(mLon)+','+str(mLat),
 str(mLon+1)+','+str(mLat),
 str(mLon-1)+','+str(mLat-1),
 str(mLon)+','+str(mLat-1),
 str(mLon+1)+','+str(mLat-1)]

 sale = SaleLocation(longitude = float(longitude),
 lattitude = float(lattitude),
 address = address,
 surroundings = grid).put()

25/01/2009 17:29SaleRadar

Page 5 of 10http://saleradar.blogspot.com/

Posted by Benno at 10:36 PM

When I do a search on a new long/lat, I figure out the grid
square that contains that point, and then I can simply
search like so:

 points = db.GqlQuery("SELECT * FROM SaleLocation
WHERE surroundings=:1", myPoint)

Because of the way lists are compared, if your search point
is in any of the nine grid squares associated with a stored
point, that stored point will return.

I chose 0.1 degrees because it's mathematically convenient,
and nine grid points because it's easy, but this could easily
be modified or extended to any shape or size. Once you've
got your results back, then you can cut with a finer blade
still, only displaying points, say, that are in a specific
circular radius, or some other permutation. But this
resolves the problem.

This solution can be applied to other range problems as
well, to avoid using inequalities. If you have items in a
database that have creation and expiration dates, stop
thinking about bounds, and instead create a list of all of
the dates that they are valid, to whatever degree of
accuracy that is required. That way instead of searching
for items where creation
It's sort of a brute force option, but I get the feeling that
this is how the Google search engine works. Lots and lots
of cheap data, divided up across lots of infrastructure; all
the work is done in creating the entity so that whatever
way you're likely to search for it, it'll come back super fast,
with little expense on the back end.

It makes sense, too. In many applications, the information
is posted once with the intention of being read many (tens,
hundreds, thousands of) times. Spending a little extra time
on the back end to figure out how it'll be read the fastest,
and spending a few extra bits to make it easy to find pays
off big time on the front end.

0 comments
Labels: bigtable, geocoding, geohashing, redundant array

of inexpensive data

http://saleradar.blogspot.com/2008/09/searching-grid-bigtable-and-geo.html
https://www.blogger.com/comment.g?blogID=118797708008818643&postID=1668790110813637628
http://saleradar.blogspot.com/search/label/redundant%20array%20of%20inexpensive%20data
http://saleradar.blogspot.com/search/label/geocoding
http://saleradar.blogspot.com/search/label/bigtable
http://saleradar.blogspot.com/search/label/geohashing

25/01/2009 17:29SaleRadar

Page 6 of 10http://saleradar.blogspot.com/

What is SaleRadar?

So what is SaleRadar? The idea came from driving around
and seeing sparsely-attended garage sales throughout my
home town, and I thought I might be able to build an easy-
to-use system for advertising these sales, that might
encourage a sort of grassroots economy to help people in
the current downturn in the economy.

The design philosophy I wanted to follow is what I call the
three S's: Simple, Simple, Simple. I am planning to add
more features later, but at the core of it, I wanted people
to be able to choose if they wanted to post or search, and
to enter and address where they were either hosting or
searching for garage sales.

I got down and dirty with the Google Maps API, and after a
little wrangling, I got some basic functionality. Building on
one of their samples, I was able to do some searching and
posting. One word to the wise: pay attention to that clap-
trap about not "unrolling" the marker object. If you want
to show multiple markers, you have to take an extra step
that's a little counter-intuitive, but that's well documented
(although I ignored it at first), so I won't cover it here for
now.

Within short order, I was proud to find that I had a system
which could take requests, do geocoding lookups, save new
listings, and display existing listings when a search was
made. But then I read some of the fine print--well, it
wasn't *that* fine, but still--and found that Google Maps
geocoding engine only accepts 15,000 requests per day
from a given IP address, and while I don't know too much
about the ins and outs of Google's infrastructure, I ran a
test where my app would query my personal server every
time I hit a certain URL, and regardless of where the
request to my Google AppEngine app originated from--
several servers I have access to around the country and the
world--the same Google IP address was hitting my servers.

http://saleradar.blogspot.com/2008/09/what-is-saleradar.html

25/01/2009 17:29SaleRadar

Page 7 of 10http://saleradar.blogspot.com/

My understanding is that when hitting GAE apps, the user
will hit infrastructure close to him or herself, but outgoing
HTTP requests all seem to be coming from one proxy, and
since I was getting those geocoding requests via HTTP
requests, it seemed possible that Google might see them
all coming from the same location. I hope not, but I
figured it was worth the challenge to move those requests
out to the user layer, in the browser.

So a couple of hours of broken application later, I made it
so that all geocoding requests come from the browser, and
then the browser queries the SaleRadar system
asynchronously, and gets an XML response with either an
acknowledgement that the sale was saved, or a list of
locations. Now, I realize that I've got nowhere near 15,000
visitors a day (just me, for now!), but this actually solved a
few problems:

If (when?) my app becomes uber-popular, I don't have
to worry about running out of free Google geocoder
requests.
If (when?) my app becomes uber-popular, I save a bit
on bandwidth and processing, since the browser is
doing a pretty good chunk of the work.
It made the user interface nicer: no page reloads,
since everything is AJAX driven.
It had the side-effect of creating an API; if I want, I
can publish it so that people can post or search my
database from other apps. I need to add some
security if I'm going to go that route, but the option
is there.
It made it easier to separate out the front-end from
the back-end, without having to dive into templates.
 Effectively speaking, all user interactions are with a
simple HTML/Javascript page, and it's only the AJAX
calls that talk to the Python AppEngine code.

Previously, I'd had the Javascript interspersed with my
Python, and it got pretty ugly in short order. I plan to
learn Django templating, but suddenly I found I did not
need to do so, so I even saved myself another step.

But one thing was troubling me: searching for map
coordinates surrounding a given point. The BigTable
datastore system was confounding me with its limitations,

25/01/2009 17:29SaleRadar

Page 8 of 10http://saleradar.blogspot.com/

Posted by Benno at 10:07 PM

datastore system was confounding me with its limitations,
and based on chatter in the AppEngine group, I wasn't
alone...

0 comments
Labels: craig's list, etc., garage sale, map

Working on Cloud Nine

Well, maybe it's just cloud three, but you know what I
mean.

I've been involved in Internet-based businesses since 1994,
everything from designing and building datacenters to
managing servers, to designing, implementing and
supporting large database-driven applications. I've worked
in a number of environments and supported clients in a
wide range of industries, and every couple of years, I've
watched as the barrier to entry for businesses keeps
getting lower and lower. While there are certainly some
problems associated with this--a web presence can give a
fraudster more apparent credibility--the benefits are
outstanding. Large corporations will always have their
place, but if the leader in a market niche does not address
the needs of all of their clients, the environment is getting
more and more friendly for small, agile companies to meet
those needs, either in complement to or competition with
the larger corporations.

The latest such democratizing technology that is in my
sights is Google AppEngine (GAE). There are other
competing cloud technologies, most notably Amazon Web
Services (AWS), which has stand-alone services for bulk
data and database storage, process queuing and virtual
machine-based processing power. I spent some time
playing with AWS, and it's got a really powerful feature set,
but GAE takes a tack that speaks more to my desired
approach to cloud computing.

The main thing is simplicity. AWS seems to be trying to
make the old guard more comfortable by simulating
datacenters. If you want to scale your application, you
build it to automatically spawn new virtual servers, and
build it such that those virtual servers load balance
effectively, and drop off appropriately when load

http://saleradar.blogspot.com/2008/09/what-is-saleradar.html
https://www.blogger.com/comment.g?blogID=118797708008818643&postID=1294397626144284747
http://saleradar.blogspot.com/search/label/map
http://saleradar.blogspot.com/search/label/garage%20sale
http://saleradar.blogspot.com/search/label/etc.
http://saleradar.blogspot.com/search/label/craig%27s%20list
http://saleradar.blogspot.com/2008/09/working-on-cloud-nine.html

25/01/2009 17:29SaleRadar

Page 9 of 10http://saleradar.blogspot.com/

effectively, and drop off appropriately when load
requirements are down. Data and process synchronization
is up to you, the developer.

With GAE, it's kind of like they took AWS and applied
BestBuy's "easy button" philosophy. There are some
features that may be missing, and some developers feel
very strongly about those features, but for me, the fact is,
I can write my application, and if it gets hit once, it's
available. If it gets hit a million times, it's available, and
(once GAE is out of beta), I just pay for the added volume
of transactions and associated processing/storage as
needed. I don't need to modify my code. The datastore
(BigTable) is part of the same service, so there is no
special key management or other hoops to go through in
order to get and put your data. While I would not call AWS
byzantine by any stretch, I found that what I was able to
accomplish within a few hours of discovering AWS, I was
able to do within a few minutes of discovering GAE.

Of course, one key word here is "beta". GAE is in beta
testing, with no road map concerning feature updates or
release dates, and so many people are hesitant to commit
to it. I'm keeping my ear to the ground on this one,
because without knowing what's coming, it's hard to treat
this as more than a hobby.

But that having been said, I'm just thrilled that I don't have
to configure Apache, that I don't have to update any
kernel. That I don't have to synch any *SQL databases.
 That I don't have to harden my linux boxes. That I don't
have to... you get the picture.

So this blog is about the development of an application I'm
working on, currently called SaleRadar, although that name
may change. I'm building it from scratch in the GAE
environment, though, so much of the content will be
focused on the intricacies of solving problems with that
system's restrictions. Google has, with GAE, reinvented a
few wheels, and it's interesting to pick apart what's gained
and what's lost with each of these revisions; it forces the
developer to think about their application's architecture
differently than they might have.

25/01/2009 17:29SaleRadar

Page 10 of 10http://saleradar.blogspot.com/

Posted by Benno at 12:34 PM

Finally, there will likely be some discussion if the ins and
outs of Python in this blog, because I have typically worked
in PERL (with some PHP and Java) on the server side, and
Javascript on the client side. Currently, Python is the only
language supported by GAE, and while my initial reaction
was that they should also support my language of choice
(and there were choruses of similar shouts about other
laguages), I figured I wouldn't wait around, so I've dived
into Python as well, and found myself appreciating the
move more than I expected to.

A basic version of SaleRadar is already working. In my next
post, I'll talk about some of the steps I took to get there
before I discuss some of the changes I have planned for the
near future.

0 comments
Labels: barrier to entry, cloud computing, gae, google app

engine

Subscribe to: Posts (Atom)

http://saleradar.blogspot.com/2008/09/working-on-cloud-nine.html
https://www.blogger.com/comment.g?blogID=118797708008818643&postID=8566899480041668680
http://saleradar.blogspot.com/search/label/google%20app%20engine
http://saleradar.blogspot.com/search/label/barrier%20to%20entry
http://saleradar.blogspot.com/search/label/cloud%20computing
http://saleradar.blogspot.com/search/label/gae
http://saleradar.blogspot.com/feeds/posts/default

